Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates
نویسندگان
چکیده
Understanding microbial transformations in soils is important for predicting future carbon sequestration and nutrient cycling. This review questions some methods of assessing one key microbial process, the uptake of labile organic compounds. First, soil microbes have a starving-survival life style of dormancy, arrested activity, and low activity. Yet they are very abundant and remain poised to completely take up all substrates that become available. As a result, dilution assays with the addition of labeled substrates cannot be used. When labeled substrates are transformed into (14)CO2, the first part of the biphasic release follows metabolic rules and is not affected by the environment. As a consequence, when identical amounts of isotopically substrates are added to soils from different climate zones, the same percentage of the substrate is respired and the same half-life of the respired (14)CO2 from the labeled substrate is estimated. Second, when soils are sampled by a variety of methods from taking 10 cm diameter cores to millimeter-scale dialysis chambers, amino acids (and other organic compounds) appear to be released by the severing of fine roots and mycorrhizal networks as well as from pressing or centrifuging treatments. As a result of disturbance as well as of natural root release, concentrations of individual amino acids of ~10 μM are measured. This contrasts with concentrations of a few nanomolar found in aquatic systems and raises questions about possible differences in the bacterial strategy between aquatic and soil ecosystems. The small size of the hyphae (2-10 μm diameter) and of the fine roots (0.2-2 mm diameter), make it very difficult to sample any volume of soil without introducing artifacts. Third, when micromolar amounts of labeled amino acids are added to soil, some of the isotope enters plant roots. This may be an artifact of the high micromolar concentrations applied.
منابع مشابه
اثر شوری بر برخی شاخصهای میکروبی خاک در حضور و عدم حضور ریشههای زنده گیاه
Similar to plants, soil salinity may reduce microbial growth and activities in different ways. The aim of this study was to determine the effects of different levels of salinity on some microbial indices in the presence and absence of plant's living roots. In this study, five levels of salinity using NaCl, CaCl2, MgCl2 and KCl and three soil media (soil with no plant, soil cultivated with wheat...
متن کاملPotential of indigenous microbes as helping agents for
The aim of this study was to assess the effects of heavy metal tolerant soil microbes inoculation on growth and metal uptake of pearl millet (Pennisetum glaucum), couch grass (Triticum repens) and alfalfa (Medicago sativa) in a soil spiked (and subsequently aged) with increasing concentrations of Pb. A soil sample (soil 1) was spiked with increasing (0 to 1500 mg/kg) concentrations of Pb and in...
متن کاملThermal adaptation of decomposer communities in warming soils
Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function ...
متن کاملMicrobial processes regulating carbon cycling in subtropical wetlands
Wetlands host complex microbial communities including bacteria, fungi, protozoa and viruses. The size and diversity of microbial communities are related directly to the quality and quantity of the resources (i.e., nutrients, energy sources) available in the system. Microbial biomass and activity is highest in habitats where these resources are concentrated, including periphyton mats, plant detr...
متن کاملAssessment the effect of Slope aspect and position on some soil microbial indices in rangeland and forest
Extended abstract Introduction Topography is one of the effective factors in soil formation and development. Topographical features such as slope aspect and position, by affecting soil temperature, evaporation capacity, soil moisture content, soil organic matter, precipitation, movement, and accumulation of soil solution can impress soil microbial properties. For investigating the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013